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A series of novel 32-functionalised lanost-7-en-3-ols (1)-(7) has been synthesised; these compounds are all 
powerful inhibitors of lanosterol 14a-methyl demethylase, an important enzyme in cholesterol biosynthesis. 

Lanosterol l4a-methyl demethylase (P-45014DM) is the rate 
limiting enzyme in the degradation of lanosterol to cholester- 
ol. P-45014DM is a cytochrome P-450 mono-oxygenase whicb 
oxidatively removes the 14a-methyl group of lanosterol via 
three 02-NADPH dependent steps. The 14a-methyl group is 
first oxidised to a hydroxymethyl moiety followed by oxida- 
tion to the corresponding aldehyde; the nature of the third 
oxidation which results in the formation of the 8,14-diene and 
loss of formic acid, is still unclear (Scheme l). ' Mammalian 
and yeast P-45014DM have been purified by Gaylor2 and 
Yoshida.3 Inhibitors of this enzyme system are not only of 
potential use as cholesterol-lowering agents4 but also as 
antimycotics since it has been shown5 that clinically useful 
antifungal agents, such as ketoconazole and miconazole, 
cause the accumulation of 14a-methylsterols. We report here 
the synthesis of a series of novel steroidal inhibitors (1)-(7) of 
P-45014DM. 

The 32-functionalised lanost-7-en-3-01s (1)-(7)t were pre- 
pared from the hitherto undescribed protected aldehydes (9) 
and (10). The latter were obtained from the known diol (S)6 by 
selective protection of the C-3 hydroxy group followed by 

1- All new compounds exhibited satisfactory spectral and analytical 
properties. Data for compounds (1)-(7) (all n.m.r. spectra in 
CDC13). ( I ) :  m.p. 106.5-107.0"C; 1Hn.m.r. 65.95(t, 1H),5.37(m, 
lH),  3.25 (dd, 1H); lyFnn.m.r. 6 -117.9 (dd), -123.6(dd). (2): m.p. 
111.5-112.5 "C; 1H n.m.r. 6 5.63 (tdd, lH),  5.33 (m, lH),  3.26 (dd, 
1H). lYFn.m.r. 6 -llO.O(ddd). (3): m.p. 142.0-142.S°C, 1Hn.m.r. 
6 5.28 (t, lH),  3.26 (dd, lH),  2.5 (dt, lH), 2.16 (dd, 1H). (4): m.p. 
161.0-162.0"C, 1Hn.m.r. 65.45-5.25(1m, lH),4.41 (brd, 1H),3.25 
(dd, lH),  2.55 (d, 1H). ( 5 ) :  m.p. 135.0-136.0 "C, 'H n.m.r. 6 
5.6-5.4 (m, lH),  4 .6-4.5 (m, lH),  3.4-3.1 (m, lH),  2.4 (d, 1H). 
(6): m.p. 106.5-107.0 "C, 'H n.m.r. 6 6.28 (dd, lH),  5.3 (m, lH),  
5.01 (dd, lH),  4.95 (dd, lH),  3.24 (dd, 1H). (7): m.p. 168.@-168.5 
"C, IH n.m.r. 6 5.42 (m, 1H) 3.28 (dd, lH),  2.17 (s, 1H). 
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NADPH + 02 J 

Scheme 1 

(1) R = CHF,, R' = H 
(2) R = CH,CHF,, R' = H 
(3) R = CH,GCH, R'  = H 
(4) and (5) R = CHOHCECH, 

( 6 )  R = CH=CH2, R' = H 
(7) R = G C H ,  R' = H 

(8) R = CH20H, R' = H 
(9) R = CHO, R' = THP 

(10) R = CHO, R '  = Ac 
(11) R = CH2CH0, R '  = THP 
(12) R = CHzCHO, R' = AC 
(13) R = CH=CHOMe, R '  = H 
(14) R = CH,CHO, R' = H 

R ' = H  

Figure 1 

oxidation at C-32 with Fetizon's reagent.' The difluoromethyl 
analogue (1) was prepared from aldehyde (10) by reaction 
with neat diethylaminosulphur trifluoride (DAST)8 at 80 "C 
followed by hydrolysis (KOH/EtOH). The easily separable 
diastereoisomeric propynyl alcohols (4) and ( 5 )  were synthe- 
sised by treatment of the THP-aldehyde (9) (THP = tetrahy- 
dropyran-2-yl) with the Grignard reagent of acetyleney 
followed by removal of the THP-protecting group with 
pyridinium toluene-p-sulphonate (PPTS)/EtOH. The vinyl 
compound (6) was prepared using Oshima's reagent" 
(CH2Br2/TiC14/Zn) followed by treatment with PPTS/EtOH. 

Table I .  The concentration of inhibitor which results in 50% reduction 
of the rate of 8,14-diene formation (ZC51J was determined using a 
substrate concentration of 25 VM. 

R ICSO 
CHF, 7.3 VM 
CH,CHF, 7.6 F M  
CHZGCH 1.2 pM 
CHOHGCH 5.0 n M  
CHOHGCH 570 n M  
CH=CH2 2.3 PM 
G C H  1.2 VM 

The acetylenic analogue (7) was obtained by reaction of 
aldehyde (9) with the ylide of chloromethyltriphenylphospho- 
nium chloride followed by treatment with n-butyl-lithium and 
removal of the protecting group at C-3 with PPTS/EtOH.l* 

The synthesis of the difluoroethyl and propynyl com- 
pounds (2) and (3) necessitated the preparation of the 
homologated aldehydes (11) and (12). The THP-protected 
aldehyde (9) was treated with the ylide of methoxymethyltri- 
phenylphosphonium chloride in tetrahydrofuran (THF) giving 
methyl enol ether (13).13 Cleavage of this enol ether (HC104/ 
E t 2 0 ,  0 "C) gave the deprotected homologated aldehyde (14) 
which was reprotected as the 3(J-THP-ether (11) (DHP/PPTS/ 
CH2Cl2)IO or the 3P-acetate (12) (Ac20/pyridine). Treatment 
of homologated aldehyde (12) with DASTX followed by 
hydrolysis (KOH/EtOH) gave the difluoroethyl analogue (2). 
The propynyl compound (3) was prepared from the homolo- 
gated aldehyde (11) in a manner analogous to the synthesis of 
the acetylenic compound (7).1* 

The 32-functionalised lanost-7-en-3-ols (1)-(7) were tested 
as inhibitors of lanosterol 14a-methyl demethylase in rat liver 
microsomes using a modification of an assay developed by 
Gaylor. l a  This assay involves the inhibition of Al4-reductase 
by AY-994414 and 4-methylsterol oxidase by NaCN resulting 
in the build-up of the 8,14-diene (15). The latter is readily 
quantified by u.v.-h.p.1.c. The K M  of dihydrolanosterol (16), 
a substrate for P-45014DM, was determined to be 23 ~ L M  using 
this assay.15 The ICSo values for the lanosterols (1)-(7) are 
given in Table 1. Each of the lanosterol derivatives (1)-(7) 
proved to be a very powerful inhibitor of P-45014DM. Although 
P-45014DM is similar to aromatase in many ways,l6 recent 
results with yeast P-45014DM indicate that the hydroxylated 
intermediate, lanost-8-ene-3,32-diol, is more tightly bound 
than lanosterol;17 the opposite trend is observed's for 
aromatase. A comparison of the ICSO values for the propynyl 
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compound (3) and the propynyl alcohols (4) and ( 5 )  (Table 1) 
suggests that mammalian P-45OIdDM may follow the same 
trend as the corresponding yeast system. 

These are the first reported steroidal inhibitors of lanosterol 
14cu-methyl demethylase. Compounds (1)-(7) were designed 
as potential irreversible inactivators of P-45014DM; therefore, 
more detailed studies into the mechanism of inhibition for 
each of these compounds are underway. 
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Comstock for help with mass spectra; The Johns Hopkins 
University, Department of Chemistry, for use of their 
40OMHz n.m.r. spectrometer; and J. L. Gaylor and J. 
Trzaskos for helpful advice concerning the assay. 
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