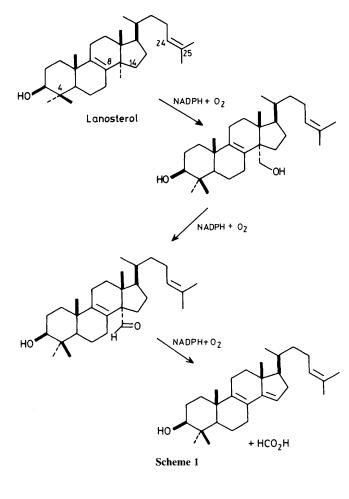
129

Novel Inhibitors of Lanosterol 14 α -Methyl Demethylase, a Critical Enzyme in Cholesterol Biosynthesis

Leah L. Frye and Cecil H. Robinson*


Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A.

A series of novel 32-functionalised lanost-7-en-3-ols (1)—(7) has been synthesised; these compounds are all powerful inhibitors of lanosterol 14α -methyl demethylase, an important enzyme in cholesterol biosynthesis.

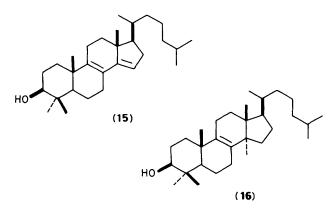
Lanosterol 14 α -methyl demethylase (P-450_{14DM}) is the rate limiting enzyme in the degradation of lanosterol to cholesterol. P-450_{14DM} is a cytochrome P-450 mono-oxygenase which oxidatively removes the 14 α -methyl group of lanosterol via three O₂-NADPH dependent steps. The 14 α -methyl group is first oxidised to a hydroxymethyl moiety followed by oxidation to the corresponding aldehyde; the nature of the third oxidation which results in the formation of the 8,14-diene and loss of formic acid, is still unclear (Scheme 1).¹ Mammalian and yeast P-450_{14DM} have been purified by Gaylor² and Yoshida.³ Inhibitors of this enzyme system are not only of potential use as cholesterol-lowering agents⁴ but also as antimycotics since it has been shown⁵ that clinically useful antifungal agents, such as ketoconazole and miconazole, cause the accumulation of 14α -methylsterols. We report here the synthesis of a series of novel steroidal inhibitors (1)—(7) of P-450_{14DM}.

The 32-functionalised lanost-7-en-3-ols (1)— $(7)^{+}$ were prepared from the hitherto undescribed protected aldehydes (9)and (10). The latter were obtained from the known diol $(8)^{6}$ by selective protection of the C-3 hydroxy group followed by

⁺ All new compounds exhibited satisfactory spectral and analytical properties. Data for compounds (1)—(7) (all n.m.r. spectra in CDCl₃). (1): m.p. 106.5—107.0 °C; ¹H n.m.r. δ 5.95 (t, 1H), 5.37 (m, 1H), 3.25 (dd, 1H); ¹⁹F n.m.r. δ -117.9 (dd), -123.6 (dd). (2): m.p. 111.5—112.5 °C; ¹H n.m.r. δ 5.63 (tdd, 1H), 5.33 (m, 1H), 3.26 (dd, 1H). ¹⁹F n.m.r. δ -110.0 (ddd). (3): m.p. 142.0—142.5 °C, ¹H n.m.r. δ 5.28 (t, 1H), 3.26 (dd, 1H), 2.5 (dt, 1H), 2.16 (dd, 1H). (4): m.p. 161.0—162.0 °C, ¹H n.m.r. δ 5.45–5.25 (1m, 1H), 4.41 (brd, 1H), 3.25 (dd, 1H), 2.55 (d, 1H). (5): m.p. 135.0—136.0 °C, ¹H n.m.r. δ 5.6—5.4 (m, 1H), 4.6—4.5 (m, 1H), 3.4 (d, 1H). (6): m.p. 106.5—107.0 °C, ¹H n.m.r. δ 6.28 (dd, 1H), 5.3 (m, 1H), 5.01 (dd, 1H), 4.95 (dd, 1H), 3.24 (dd, 1H). (7): m.p. 168.0—168.5 °C, ¹H n.m.r. δ 5.42 (m, 1H) 3.28 (dd, 1H), 2.17 (s, 1H).

(1)
$$R = CHF_2, R' = H$$

(2) $R = CH_2CHF_2, R' = H$
(8) $R = CH_2OH, R' = H$
(9) $R = CHO, R' = THP$


= H

(3) $R = CH_2C \equiv CH, R' = H$ (10) R = CHO, R' = Ac(4) and (5) \overline{R} = CHOHC=CH, (11) $R = CH_2CHO, R' = THP$ $\mathbf{R}' = \mathbf{H}$ $(12) R = CH_2 CHO, R' = Ac$ (6) $R = CH = CH_2, R' = H$ (13) R = CH = CHOMe, R' = H(7) $R = C \equiv CH, R' = H$ $(14) R = CH_2 CHO, R' = H$

oxidation at C-32 with Fetizon's reagent.7 The difluoromethyl analogue (1) was prepared from aldehyde (10) by reaction with neat diethylaminosulphur trifluoride (DAST)⁸ at 80 °C followed by hydrolysis (KOH/EtOH). The easily separable diastereoisomeric propynyl alcohols (4) and (5) were synthesised by treatment of the THP-aldehyde (9) (THP = tetrahydropyran-2-yl) with the Grignard reagent of acetylene9 followed by removal of the THP-protecting group with pyridinium toluene-p-sulphonate (PPTS)/EtOH.¹⁰ The vinyl compound (6) was prepared using Oshima's reagent¹¹ (CH₂Br₂/TiCl₄/Zn) followed by treatment with PPTS/EtOH.

Table 1. The concentration of inhibitor which results in 50% reduction of the rate of 8,14-diene formation (IC_{50}) was determined using a substrate concentration of 25 µм.

Compound	R	IC ₅₀
(1)	CHF_2	7.3 µм
(2)	CH_2CHF_2	7.6 µм
(3)	CH ₂ C _E CH	1.2 µм
(4)	CHOHC≡CH	5.0 пм
(5)	CHOHC≡CH	570 пм
(6)	CH=CH ₂	2.3 μм
(7)	C=CH	1.2 μм

The acetylenic analogue (7) was obtained by reaction of aldehyde (9) with the ylide of chloromethyltriphenylphosphonium chloride followed by treatment with n-butyl-lithium and removal of the protecting group at C-3 with PPTS/EtOH.12

The synthesis of the difluoroethyl and propynyl compounds (2) and (3) necessitated the preparation of the homologated aldehydes (11) and (12). The THP-protected aldehyde (9) was treated with the ylide of methoxymethyltriphenylphosphonium chloride in tetrahydrofuran (THF) giving methyl enol ether (13).¹³ Cleavage of this enol ether (HClO₄/ Et_2O , 0 °C) gave the deprotected homologated aldehyde (14) which was reprotected as the 3β -THP-ether (11) (DHP/PPTS/ CH_2Cl_2 ¹⁰ or the 3 β -acetate (12) (Ac₂O/pyridine). Treatment of homologated aldehyde (12) with DAST⁸ followed by hydrolysis (KOH/EtOH) gave the difluoroethyl analogue (2). The propynyl compound (3) was prepared from the homologated aldehyde (11) in a manner analogous to the synthesis of the acetylenic compound (7).¹²

The 32-functionalised lanost-7-en-3-ols (1)--(7) were tested as inhibitors of lanosterol 14α -methyl demethylase in rat liver microsomes using a modification of an assay developed by Gaylor.^{1a} This assay involves the inhibition of Δ^{14} -reductase by AY-994414 and 4-methylsterol oxidase by NaCN resulting in the build-up of the 8,14-diene (15). The latter is readily quantified by u.v.-h.p.l.c. The $K_{\rm M}$ of dihydrolanosterol (16), a substrate for P-450_{14DM}, was determined to be 23 μ M using this assay.¹⁵ The IC₅₀ values for the lanosterols (1)—(7) are given in Table 1. Each of the lanosterol derivatives (1)--(7) proved to be a very powerful inhibitor of P-450_{14DM}. Although P-450_{14DM} is similar to aromatase in many ways,¹⁶ recent results with yeast P-450_{14DM} indicate that the hydroxylated intermediate, lanost-8-ene-3,32-diol, is more tightly bound than lanosterol;17 the opposite trend is observed18 for aromatase. A comparison of the IC₅₀ values for the propynyl compound (3) and the propynyl alcohols (4) and (5) (Table 1) suggests that mammalian $P-450_{14DM}$ may follow the same trend as the corresponding yeast system.

These are the first reported steroidal inhibitors of lanosterol 14α -methyl demethylase. Compounds (1)—(7) were designed as potential irreversible inactivators of P-450_{14DM}; therefore, more detailed studies into the mechanism of inhibition for each of these compounds are underway.

We thank the N.I.H. for financial support; H. Fales and W. Comstock for help with mass spectra; The Johns Hopkins University, Department of Chemistry, for use of their 400 MHz n.m.r. spectrometer; and J. L. Gaylor and J. Trzaskos for helpful advice concerning the assay.

Received, 13th July 1987; Com. 1014

References

- 1 (a) J. M. Trzaskos, W. D. Bowen, A. Shafiee, R. T. Fischer, and J. T. Gaylor, *J. Biol. Chem.*, 1984, **259**, 13402; (b) G. J. Schroepfer, Jr., *Annu. Rev. Biochem.*, 1982, **51**, 603.
- 2 J. Trzaskos, S. Kawata, and J. L. Gaylor, J. Biol. Chem., 1986, 261, 14651.
- 3 Y. Yoshida and Y. Aoyama, J. Biol. Chem., 1984, 259, 1655.
- 4 D. H. Blackenhorn, S. A. Nessim, R. L. Johnson, M. E. Sanmarco, S. P. Azen, and L. Cashin-Hemphill, J. Am. Med. Assoc., 1987, 257, 3233.
- 5 T. A. Mietteneu and V. V. Valtonen, *Lancet*, 1984, **11**, 1271; J. D. Bergman, G. G. Holz, Jr., and D. H. Beach, *Mol. Biochem. Parasitol.*, 1984, **12**, 1; H. Van Der Bosche, G. Willemsens,

W. Cools, W. F. J. Lauwers, and L. Le Jeune, *Chem.-Biol. Interactions*, 1978, **21**, 59; H. Van Der Bosche, G. Willemsens, W. Cools, F. Cornelissen, W. F. Lauwers, and J. M. Van Cutsem, *Antimicrob. Agents Chemother.*, 1980, **17**, 922; M. J. Henry, H. D. Sisler, *ibid.*, 1980, **15**, 603; *Biochem. Pharmacol.*, 1985, **34**, 1087.

- 6 E. J. Parish and G. H. Schroepfer, Jr., J. Lipid Res., 1981, 22, 859;
 L. L. Frye and C. H. Robinson, in preparation.
- 7 M. Fetizon and M. Golfier, C.R. Acad. Sci., Ser. C., 1968, 276, 900.
- 8 L. N. Markovskij, V. E. Pashinnik, and A. V. Kirsanov, Synthesis, 1973, 787; W. J. Middleton, J. Org. Chem., 1975, 40, 574.
- 9 L. Skattebøl, E. R. H. Jones, and M. C. Whiting, *Org. Syn.*, Coll. Vol. 4, 1963, 793.
- 10 N. Miyashita, A. Yoshikoshi, and P. A. Grieco. J. Org. Chem., 1975, 42, 3772.
- 11 K. Oshima, K. Takai, Y. Hotta, and H. Nozake, *Tetrahedron Lett.*, 1978, 2417; L. Lombardo, *ibid.*, 1982, 4293.
- 12 D. Seyferth, S. O. Grim, and T. O. Read, J. Am. Chem. Soc., 1961, 83, 1617; T. F. Rutledge, 'Acetylenic Compounds: Preparation and Substitution Reactions,' Reinhold, New York, 1968, p. 22.
- 13 S. Danishefsky, S. Chackalamannil, P. Harrison, M. Silvestri, and P. Cole, J. Am. Chem. Soc., 1985, 107, 2474.
- 14 Y.-K. Paik, J. M. Trzaskos, A. Shafiee, and J. L. Gaylor, J. Biol. Chem., 1984, 259, 13413.
- 15 Lit. K_M 50 µм, see ref. 1a.
- 16 M. Akhtar, D. Corina, J. Pratt, and T. Smith, J. Chem. Soc., Chem. Commun., 1976, 854.
- 17 Y. Aoyama, Y. Yoshida, Y. Sonoda, and Y. Sato, J. Biol. Chem., 1987, 262, 1239.
- 18 J. T. Kellis and L. E. Vickery, J. Biol. Chem., 1987, 262, 4413.